MATRICE : H --(2x2)

 Det |H|=+i +i +i

X
 Det |H1|=+i +i +i
=
 Det |H2|=+i +i +i +i +i
Det |C|=+i[]   Det |C1|=+i[]
co-factors:   co-factors:
|       +i[]                     |       +i[]
+i[ ]  |        +i[ ]       |
|       +i[]                     |       +i[]
+i[ ]       |        +i[ ]       |
Inverse: Det |H-1|=+i[]   Inverse: Det |H1-1|=+i[]
+i                  |       +i[]   +i                  |       +i[]
+i[ ]    |      +i  []   +i[ ]   |      +i  []
(Det |H|)*Det |H-1|=+i   (Det |H1|)*Det |H1-1|=+i

Whether matrix is Hermitian ?   Whether matrix is Hermitian ?
Put Arbitrary value of 2nd component of Eigen Vector:

b =  +i

Put Arbitrary value of 2nd component of Eigen Vector:

b =  +i

Ratio of eigen vectors for λ1(a1:b)
real part--         :
Imaginary part-- :

Ratio of eigen vectors for λ2(a2:b)
real part--         :
Imaginary part-- :

1st Eigen vector component for λ1(a1):+i()   1st Eigen vector component for λ1(a1):+i()
1st Eigen vector component for λ2(a2):+i()   1st Eigen vector component for λ2(a2):+i()
1st Eigenvector component normalized for λ1:
1st Eigenvector component normalized for λ2:

Eigen Equn:  λ2 + λ[]+[]=0   Eigen Equn:λ2 + λ[]+[]=0

λ1=  + i()*    λ1=+ i()*
λ2=+ i()*    λ2=+i()*
 Below is   H*H†   matrix Since H =H†, Det |HH†  | = If Det |HH†  | = 1,H  is a unitary matrix & H† = H-1 + i +i

 * If H is invertible, then 1/ λ  is an eigenvalue of H-1   . If k is any number, λ + k is an eigenvalue of H +kI * If A is a square matrix, then This theorem is known as Caley-Hamilton theorem. * λ  are the eigen values. 2-D space vectors/spinors will have 2 eigen values. λ =0 implies matrix is singular. * If  λ is imaginary/complex, then the matrix does not have an eigenvalue & hence no eigenvector.  The dimension of the eigen vector corresponding to an eigenvalue is less than or equal to the multiplicity of that eigenvalue. * Hermitian matrices (H) are square matrices with complex entries in off-diagonal elements. aij =(aji)* . The real analog is symmetric matrices. H† is called Hermitian conjugate of H and H†=H. HH† is also hermitian and HH† =H†H = H2 * All Hermitian matrices are normal since HH† =H†H  . The real counterpart is that  product of real symmetric matrices with their transpose is commutative and hence normal.  HTH =HHT * A hermitian matrix H is called Unitary if  HH† =H†H =I where I is the Identity matrix. In that case H=H† =H-1   . * Well known 2x2 Hermitian matrices are Pauli Matrices named after the renowned physicist Wolf Gong Pauli. These are unitary also. There are 4 Pauli matrices including the identity matrix. Out of these, 3 have all real elements and one has complex numbers.  * The commutation relation of Pauli matrices are * We define anti-commutator as * [σi]2=I where i=1,2,3.[σi]  *  [σj]  +  [σj]  *  [σi]      = 2δijI * The Pauli matrices and the 2x2 Identity matrice I form a complete set. Any 2x2 Hermitian matrix, say A can be expressed as a linear combination of these 4 matrices   A =C0σ0  +C1σ1 + C2σ2  + C3σ3      where   C0, C1 ,C2 ,C3  are the linear co-efficient. *Dimension of the Hilbert space corresponding to spin state s is 2s+1. Elements of this vector space are called spinors. We have seen that & are eigen states of Sz operator and these spinors form a basis for 2-D spinor space. For σx  , the eigen values are = and λ=+ 1 and -1.For  λ=+ 1 , the eigenvector equation is which gives a=b. To normalize the eigen state, so that the state is For λ=- 1 , the eigenvector equation is which gives a=-b. And the normalized eigen state is .   Similarly for σy , we get  2 normalized eigen states as for  λ= 1 and -1 respectively. This can be written in terms of σz  eigen states  as . Since the coefficients of the two σz  eigen states are equal in magnitude, if σz  is measured for a particle in σy   eigen state, it is equally likely to be spin up or down. Rotation matrix are :- and . The 2x2 rotation matrix must have the following form-- with a^2 + b^2 =1 *Those matrices where A = A-1  , are called involutary matrices. * If A is a matrix, B is a matrix , then AB may be a null matrix under certain circumstances. What are the circumstances ? ( For 2x2 matrices) * Matrix A is called IDEMPOTENT Matrix if A2 =A Link-1,2,3,4,5,6,7,8,9,10,