Calculation of Product-moment Co-efficient of Linear Correlation
in
Bivariate Distribution- joint distribution of 2 variables
(Scatter Diagram - fill up the frequency)
(Fill this first)
| Assumed Mean(AM)- | Assumed Mean(AM)- | ||||||
| Interval - | Interval - | ||||||
| Score-x | Mid-point (x) | frequency-x | Score-y | Mid-point (y) | frequency-y | ||
| AM | Cumulative Frequency | AM | Cumu. Frequency | ||||
| SD-- σx | Coefficient of Correlation -- r | SD--σy | |||||
| Standard error of r for large N | |||||||
| Coefficient of alienation -- k | |||||||
| coefficient of forecasting E efficiency | |||||||
| Regression Eqn-I | ȳ= (r* σy/σx )x = | x | Standard Error of ȳ | ||||
| Regression Eqn-II | x̄=(r* σx/σy )y = | y | Standard Error of x̄ | ||||
Formulae:
Arithmetic Mean = Assumed Mean + ci; where c = fx' / (sum of the frequencies=N ), i= no. of entries in a class interval;
Standard Deviation = i*√ [(Σ fx'2 / N) - c2]
Take Assumed Mean as the mid value corresponding to maximum frequency. In general, any value with the range of values can
be taken as Assumed Mean.
Co-efficient of correlation : r = ((Σx'y') /N) -((Σfx')*(Σfy')/(N*N')) / [ ( σx / interval length)* (σy / interval length) ]
or
r = [((Σx'y') /N) -cxcy] / σ'y σ' x
where Cx = fx' / N and Cy = fy' / N and σ' = σ / (class interval)
Standard Error of Y = σy * √(1 - r2 )
Standard Error of X = σx * √(1 - r2 )
Coefficient of alienation k = √(1 - r2 )
Coefficient of forecasting efficiency E = 1 - K
Standard Error of r = (1 - r2 ) / √ N for large N
Example
X-variable - weight in pounds
| Weight interval | frequency |
| 100-109 (ht interval- 1+1+1) | 3 |
| 110-119 ( 1+2+5+2) | 10 |
| 120-129 (0+7+7+9+4+1) | 28 |
| 130-139(1+1+10+11+11+3) | 37 |
| 140-149 (0+2+3+8+6+3) | 22 |
| 150-159 (0+0+0+2+3+4) | 9 |
| 160-169 (0+0+0+1+2+2) | 5 |
| 170-179 (0+0+0+0+2+3+1) | 6 |
Y-variable - Height in inches
| Height interval | frequency |
| 60-61 (ht interval- 1+1+0+1) | 3 |
| 62-63 ( 1+2+7+1+2) | 13 |
| 64-65 (1+5+7+10+3) | 26 |
| 66-67 (0+2+9+11+8+2+1) | 33 |
| 68-69 (0+0+4+11+6+3+2+2) | 28 |
| 70-71 (0+0+1+3+3+4+2+3) | 16 |
| 72-73 (0+0+0+0+0+0+0+1) | 1 |
sd of height=2.62 ; sd of weight=15.55 r=0.60